BOKU - Universität für Bodenkultur Wien - Forschungsinformationssystem

Logo BOKU-Forschungsportal


Suchbegriffe: Cellobiose dehydrogenase, . Treffer: 83

** = Publikationen gelistet in SCI/SSCI (veröffentlicht im Web of Science)
* = Publikationen in sonstigen peer-reviewten Journalen (ggf. noch nicht im WoS veröffentlicht)
Filter: Originalarbeit, Übersichtsarbeit, Konferenzband Originalarbeit


** Jayakumar, K; Reichhart, TMB; Schulz, C; Ludwig, R; Felice, AKG; Leech, D An Oxygen Insensitive Amperometric Glucose Biosensor Based on An Engineered Cellobiose Dehydrogenase: Direct versus Mediated Electron Transfer Responses.

CHEMELECTROCHEM. 2022; 9(13), e202200418 WoS FullText FullText_BOKU

** Yan, XM; Tang, J; Ma, S; Tanner, D; Ludwig, R; Ulstrup, J; Xiao, XX

Engineering bio-interfaces for the direct electron transfer of Myriococcum thermophilum cellobiose dehydrogenase: Towards a mediator-less biosupercapacitor/biofuel cell hybrid


BIOSENS BIOELECTRON. 2022; 210, 114337 WoS PubMed FullText FullText_BOKU


** Felice, AKG; Schuster, C; Kadek, A; Filandr, F; Laurent, CVFP; Scheiblbrandner, S; Schwaiger, L; Schachinger, F; Kracher, D; Sygmund, C; Man, P; Halada, P; Oostenbrink, C; Ludwig, R Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase.

ACS CATAL. 2021; 11(2): 517-532. WoS PubMed FullText FullText_BOKU

** Geiss, AF; Reichhart, TMB; Pejker, B; Plattner, E; Herzog, PL; Schulz, C; Ludwig, R; Felice, AKG; Haltrich, D Engineering the Turnover Stability of Cellobiose Dehydrogenase toward Long-Term Bioelectronic Applications.

ACS SUSTAIN CHEM ENG. 2021; 9(20): 7086-7100. WoS FullText FullText_BOKU

** Hedison, TM; Breslmayr, E; Shanmugam, M; Karnpakdee, K; Heyes, DJ; Green, AP; Ludwig, R; Scrutton, NS; Kracher, D Insights into the H2O2-driven catalytic mechanism of fungal lytic polysaccharide monooxygenases.

FEBS J. 2021; 288(13): 4115-4128. WoS PubMed FullText FullText_BOKU

** Wohlschlager, L; Csarman, F; Chang, HC; Fitz, E; Seiboth, B; Ludwig, R Heterologous expression of Phanerochaete chrysosporium cellobiose dehydrogenase in Trichoderma reesei.

MICROB CELL FACT. 2021; 20(1), 2 WoS PubMed FullText FullText_BOKU


** Breslmayr, E; Laurent, CVFP; Scheiblbrandner, S; Jerkovic, A; Heyes, DJ; Oostenbrink, C; Ludwig, R; Hedison, TM; Scrutton, NS; Kracher, D Protein Conformational Change Is Essential for Reductive Activation of Lytic Polysaccharide Monooxygenase by Cellobiose Dehydrogenase.

ACS CATAL. 2020; 10(9): 4842-4853. WoS PubMed FullText FullText_BOKU

** Filandr, F; Man, P; Halada, P; Chang, HH; Ludwig, R; Kracher, D The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay.

BIOTECHNOL BIOFUELS. 2020; 13(1), 37 WoS PubMed FullText FullText_BOKU

** Kracher, D; Forsberg, Z; Bissaro, B; Gangl, S; Preims, M; Sygmund, C; Eijsink, VGH; Ludwig, R; Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase..

FEBS J. 2020; 287(5):897-908 WoS PubMed FullText FullText_BOKU

** Scheiblbrandner, S; Ludwig, R; Cellobiose dehydrogenase: Bioelectrochemical insights and applications..

Bioelectrochemistry. 2020; 131:107345 WoS PubMed FullText FullText_BOKU

** Tan, YL; Ma, S; Leonhard, M; Moser, D; Ludwig, R; Schneider-Stickler, B Co-immobilization of cellobiose dehydrogenase and deoxyribonuclease I on chitosan nanoparticles against fungal/bacterial polymicrobial biofilms targeting both biofilm matrix and microorganisms..

MAT SCI ENG C-MATER. 2020; 108, 110499 WoS PubMed FullText FullText_BOKU


** Grippo, V; Ma, S; Ludwig, R; Gorton, L; Bilewicz, R; Cellobiose dehydrogenase hosted in lipidic cubic phase to improve catalytic activity and stability..

Bioelectrochemistry. 2019; 125:134-141 WoS PubMed FullText FullText_BOKU

** Ma, S; Laurent, CVFP; Meneghello, M; Tuoriniemi, J; Oostenbrink, C; Gorton, L; Bartlett, PN; Ludwig, R Direct Electron-Transfer Anisotropy of a Site-Specifically Immobilized Cellobiose Dehydrogenase.

ACS CATAL. 2019; 9(8): 7607-7615. WoS FullText FullText_BOKU

** Meneghello, M; Al-Lolage, FA; Ma, S; Ludwig, R; Bartlett, PN Studying Direct Electron Transfer by Site-Directed Immobilization of Cellobiose Dehydrogenase.

CHEMELECTROCHEM. 2019; 6(3): 700-713. WoS PubMed PUBMED Central FullText FullText_BOKU

** Zafar, MN; Aslam, I; Ludwig, R; Xu, GB; Gorton, L An efficient and versatile membraneless bioanode for biofuel cells based on Corynascus thermophilus cellobiose dehydrogenase.

ELECTROCHIM ACTA. 2019; 295: 316-324. WoS FullText FullText_BOKU


** Bollella, P; Fusco, G; Stevar, D; Gorton, L; Ludwig, R; Ma, S; Boer, H; Koivula, A; Tortolini, C; Favero, G; Antiochia, R; Mazzei, F A Glucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva.

SENSOR ACTUAT B-CHEM. 2018; 256: 921-930. WoS FullText FullText_BOKU

** Sutzl, L; Laurent, CVFP; Abrera, AT; Schutz, G; Ludwig, R; Haltrich, D Multiplicity of enzymatic functions in the CAZy AA3 family.

APPL MICROBIOL BIOT. 2018; 102(6): 2477-2492. WoS PubMed FullText FullText_BOKU


** Al-Lolage, FA; Meneghello, M; Ma, S; Ludwig, R; Bartlett, PN A Flexible Method for the Stable, Covalent Immobilization of Enzymes at Electrode Surfaces.

CHEMELECTROCHEM. 2017; 4(6): 1528-1534. WoS FullText FullText_BOKU

** Bollella, P; Gorton, L; Ludwig, R; Antiochia, R A Third Generation Glucose Biosensor Based on Cellobiose Dehydrogenase Immobilized on a Glassy Carbon Electrode Decorated with Electrodeposited Gold Nanoparticles: Characterization and Application in Human Saliva.

SENSORS-BASEL. 2017; 17(8): WoS PubMed PUBMED Central FullText FullText_BOKU

** Bollella, P; Ludwig, R; Gorton, L Cellobiose dehydrogenase: Insights on the nanostructuration of electrodes for improved development of biosensors and biofuel cells.

APPL MATER TODAY. 2017; 9: 319-332. WoS FullText FullText_BOKU

** Bollella, P; Mazzei, F; Favero, G; Fusco, G; Ludwig, R; Gorton, L; Antiochia, R Improved DET communication between cellobiose dehydrogenase and a gold electrode modified with a rigid self-assembled monolayer and green metal nanoparticles: The role of an ordered nanostructuration.

BIOSENS BIOELECTRON. 2017; 88: 196-203. WoS PubMed FullText FullText_BOKU

** Bollella, P; Schulz, C; Favero, G; Mazzei, F; Ludwig, R; Gorton, L; Antiochia, R Green Synthesis and Characterization of Gold and Silver Nanoparticles and their Application for Development of a Third Generation Lactose Biosensor.

ELECTROANAL. 2017; 29(1): 77-86. WoS FullText FullText_BOKU

** Huber, D; Tegl, G; Mensah, A; Beer, B; Baumann, M; Borth, N; Sygmund, C; Ludwig, R; Guebitz, GM A Dual-Enzyme Hydrogen Peroxide Generation Machinery in Hydrogels Supports Antimicrobial Wound Treatment.

ACS APPL MATER INTER. 2017; 9(18): 15307-15316. WoS PubMed FullText FullText_BOKU

** Kadek, A; Kavan, D; Marcoux, J; Stojko, J; Felice, AK; Cianférani, S; Ludwig, R; Halada, P; Man, P; Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics..

Biochim Biophys Acta. 2017; 1861(2):157-167 WoS PubMed FullText FullText_BOKU

** Kanso, H; González García, MB; Llano, LF; Ma, S; Ludwig, R; Fanjul Bolado, P; Santos, DH; Novel thin layer flow-cell screen-printed graphene electrode for enzymatic sensors..

Biosens Bioelectron. 2017; 93:298-304 WoS PubMed FullText FullText_BOKU

** Lopez, F; Ma, S; Ludwig, R; Schuhmann, W; Ruff, A A Polymer Multilayer Based Amperometric Biosensor for the Detection of Lactose in the Presence of High Concentrations of Glucose.

ELECTROANAL. 2017; 29(1): 154-161. WoS FullText FullText_BOKU

** Ma, S; Preims, M; Piumi, F; Kappel, L; Seiboth, B; Record, E; Kracher, D; Ludwig, R; Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems..

Microb Cell Fact. 2017; 16(1):37 WoS PubMed PUBMED Central FullText FullText_BOKU

** Nyanhongo, GS; Thallinger, B; Guebitz, GM Cellobiose dehydrogenase-based biomedical applications.

PROCESS BIOCHEM. 2017; 59: 37-45. WoS FullText FullText_BOKU

** Ortiz, R; Rahman, M; Zangrilli, B; Sygmund, C; Micheelsen, PO; Silow, M; Toscano, MD; Ludwig, R; Gorton, L Engineering of Cellobiose Dehydrogenases for Improved Glucose Sensitivity and Reduced Maltose Affinity.

CHEMELECTROCHEM. 2017; 4(4): 846-855. WoS FullText FullText_BOKU


** Cipri, A; Schulz, C; Ludwig, R; Gorton, L; del Valle, M A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytes.

BIOSENS BIOELECTRON. 2016; 79: 515-521. WoS PubMed FullText FullText_BOKU

** Courtade, G; Wimmer, R; Rohr, AK; Preims, M; Felice, AKG; Dimarogona, M; Vaaje-Kolstad, G; Sorlie, M; Sandgren, M; Ludwig, R; Eijsink, VGH; Aachmann, FL Interactions of a fungal lytic polysaccharide monooxygenase with beta-glucan substrates and cellobiose dehydrogenase.

P NATL ACAD SCI USA. 2016; 113(21): 5922-5927. WoS PubMed FullText FullText_BOKU

** Loose, JSM; Forsberg, Z; Kracher, D; Scheiblbrandner, S; Ludwig, R; Eijsink, VGH; Vaaje-Kolstad, G Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase.

PROTEIN SCI. 2016; 25(12): 2175-2186. WoS PubMed FullText FullText_BOKU

** Patel, I; Kracher, D; Ma, S; Garajova, S; Haon, M; Faulds, CB; Berrin, JG; Ludwig, R; Record, E; Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6..

Biotechnol Biofuels. 2016; 9:108 WoS PubMed PUBMED Central FullText FullText_BOKU

** Schulz, C; Kittl, R; Ludwig, R; Gorton, L Direct Electron Transfer from the FAD Cofactor of Cellobiose Dehydrogenase to Electrodes.

ACS CATAL. 2016; 6(2): 555-563. WoS FullText FullText_BOKU

** Tegl, G; Thallinger, B; Beer, B; Sygmund, C; Ludwig, R; Rollett, A; Nyanhongo, GS; Guebitz, GM Antimicrobial Cellobiose Dehydrogenase-Chitosan Particles.

ACS APPL MATER INTER. 2016; 8(1): 967-973. WoS PubMed FullText FullText_BOKU

** Thallinger, B; Brandauer, M; Burger, P; Sygmund, C; Ludwig, R; Ivanova, K; Kun, J; Scaini, D; Burnet, M; Tzanov, T; Nyanhongo, GS; Guebitz, GM; Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system..

J Biomed Mater Res B Appl Biomater. 2016; 104(7):1448-1456 WoS PubMed FullText FullText_BOKU


** Kadek, A; Kavan, D; Felice, AK; Ludwig, R; Halada, P; Man, P; Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase..

FEBS Lett. 2015; 589(11):1194-1199 WoS PubMed FullText FullText_BOKU

** Kielb, P; Sezer, M; Katz, S; Lopez, F; Schulz, C; Gorton, L; Ludwig, R; Wollenberger, U; Zebger, I; Weidinger, IM; Spectroscopic Observation of Calcium-Induced Reorientation of Cellobiose Dehydrogenase Immobilized on Electrodes and its Effect on Electrocatalytic Activity..

Chemphyschem. 2015; 16(9):1960-1968 WoS PubMed FullText FullText_BOKU

** Kracher, D; Zahma, K; Schulz, C; Sygmund, C; Gorton, L; Ludwig, R Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations.

FEBS J. 2015; 282(16): 3136-3148. WoS PubMed FullText FullText_BOKU

** Prasetyo, EN; Rodriguez, RD; Lukesch, B; Weiss, S; Murkovic, M; Katsoyannos, E; Sygmund, C; Ludwig, R; Nyanhongo, GS; Guebitz, G Laccase-cellobiose dehydrogenase-catalyzed detoxification of phenolic-rich olive processing residues.

INT J ENVIRON SCI TE. 2015; 12(4): 1343-1352. WoS FullText FullText_BOKU


** Feifel, SC; Kapp, A; Ludwig, R; Lisdat, F Nanobiomolecular Multiprotein Clusters on Electrodes for the Formation of a Switchable Cascadic Reaction Scheme.

ANGEW CHEM INT EDIT. 2014; 53(22): 5676-5679. WoS FullText FullText_BOKU

** Lamberg, P; Shleev, S; Ludwig, R; Arnebrant, T; Ruzgas, T Performance of enzymatic fuel cell in cell culture.

BIOSENS BIOELECTRON. 2014; 55: 168-173. WoS FullText FullText_BOKU

** Ortiz, R; Ludwig, R; Gorton, L Highly Efficient Membraneless Glucose Bioanode Based on Corynascus thermophilus Cellobiose Dehydrogenase on Aryl Diazonium-Activated Single-Walled Carbon Nanotubes.

CHEMELECTROCHEM. 2014; 1(11): 1948-1956. WoS FullText FullText_BOKU

** Shao, ML; Guschin, DA; Kawah, Z; Beyl, Y; Stoica, L; Ludwig, R; Schuhmann, W; Chen, XX Cellobiose dehydrogenase entrapped within specifically designed Os-complex modified electrodeposition polymers as potential anodes for biofuel cells.

ELECTROCHIM ACTA. 2014; 128: 318-325. WoS FullText FullText_BOKU

** Thallinger, B; Argirova, M; Lesseva, M; Ludwig, R; Sygmund, C; Schlick, A; Nyanhongo, GS; Guebitz, GM; Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenase..

Int J Antimicrob Agents. 2014; 44(5):402-408 WoS PubMed FullText FullText_BOKU

** Yarman, A; Schulz, C; Sygmund, C; Ludwig, R; Gorton, L; Wollenberger, U; Scheller, FW Third Generation ATP Sensor with Enzymatic Analyte Recycling.

ELECTROANAL. 2014; 26(9): 2043-2048. WoS FullText FullText_BOKU


** Flitsch, A; Prasetyo, EN; Sygmund, C; Ludwig, R; Nyanhongo, GS; Guebitz, GM Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenase.

ENZYME MICROB TECH. 2013; 52(1): 60-67. WoS FullText FullText_BOKU

** Ludwig, R; Ortiz, R; Schulz, C; Harreither, W; Sygmund, C; Gorton, L; Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering..

Anal Bioanal Chem. 2013; 405(11):3637-3658 WoS PubMed PUBMED Central FullText FullText_BOKU

** Mulla, D; Kracher, D; Ludwig, R; Nagy, G; Grandits, M; Holzer, W; Saber, Y; Gabra, N; Viernstein, H; Unger, FM Azido derivatives of cellobiose: oxidation at C1 with cellobiose dehydrogenase from Sclerotium rolfsii.

CARBOHYD RES. 2013; 382: 86-94. WoS FullText FullText_BOKU

** Nyanhongo, GS; Sygmund, C; Ludwig, R; Prasetyo, EN; Guebitz, GM An antioxidant regenerating system for continuous quenching of free radicals in chronic wounds..

Eur J Pharm Biopharm. 2013; 83(3):396-404 WoS PubMed FullText FullText_BOKU

** Nyanhongo, GS; Sygmund, C; Ludwig, R; Prasetyo, EN; Guebitz, GM Synthesis of multifunctional bioresponsive polymers for the management of chronic wounds.

J BIOMED MATER RES B. 2013; 101B(5): 882-891. WoS FullText FullText_BOKU

** Poller, S; Shao, ML; Sygmund, C; Ludwig, R; Schuhmann, W Low potential biofuel cell anodes based on redox polymers with covalently bound phenothiazine derivatives for wiring flavin adenine dinucleotide-dependent enzymes.

ELECTROCHIM ACTA. 2013; 110: 152-158. WoS FullText FullText_BOKU

** Shao, M; Zafar, MN; Sygmund, C; Guschin, DA; Ludwig, R; Peterbauer, CK; Schuhmann, W; Gorton, L Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints..

Biosens Bioelectron. 2013; 40(1):308-314 WoS PubMed FullText FullText_BOKU

** Shao, ML; Poller, S; Sygmund, C; Ludwig, R; Schuhmann, W A low-potential glucose biofuel cell anode based on a toluidine blue modified redox polymer and the flavodehydrogenase domain of cellobiose dehydrogenase.

ELECTROCHEM COMMUN. 2013; 29: 59-62. WoS FullText FullText_BOKU

** Shao, ML; Zafar, MN; Falk, M; Ludwig, R; Sygmund, C; Peterbauer, CK; Guschin, DA; MacAodha, D; Conghaile, PO; Leech, D; Toscano, MD; Shleev, S; Schuhmann, W; Gorton, L Optimization of a Membraneless Glucose/Oxygen Enzymatic Fuel Cell Based on a Bioanode with High Coulombic Efficiency and Current Density.

CHEMPHYSCHEM. 2013; 14(10): 2260-2269. WoS FullText FullText_BOKU

** Tasca, F; Ludwig, R; Gorton, L; Antiochia, R Determination of lactose by a novel third generation biosensor based on a cellobiose dehydrogenase and aryl diazonium modified single wall carbon nanotubes electrode.

SENSOR ACTUAT B-CHEM. 2013; 177: 64-69. WoS FullText FullText_BOKU


** Kovacs, G; Ortiz, R; Coman, V; Harreither, W; Popescu, IC; Ludwig, R; Gorton, L Graphite electrodes modified with Neurospora crassa cellobiose dehydrogenase: Comparative electrochemical characterization under direct and mediated electron transfer.

BIOELECTROCHEMISTRY. 2012; 88: 84-91. WoS PubMed FullText FullText_BOKU

** Sarauli, D; Ludwig, R; Haltrich, D; Gorton, L; Lisdat, F Investigation of the mediated electron transfer mechanism of cellobiose dehydrogenase at cytochrome c-modified gold electrodes..

Bioelectrochemistry. 2012; 87(3-4):9-14 WoS PubMed FullText FullText_BOKU

** Schulz, C; Ludwig, R; Micheelsen, PO; Silow, M; Toscano, MD; Gorton, L Enhancement of enzymatic activity and catalytic current of cellobiose dehydrogenase by calcium ions.

ELECTROCHEM COMMUN. 2012; 17: 71-74. WoS FullText FullText_BOKU

** Vasilchenko, LG; Ludwig, R; Yershevich, OP; Haltrich, D; Rabinovich, ML High-throughput screening for cellobiose dehydrogenases by Prussian Blue in situ formation.

BIOTECHNOL J. 2012; 7(7): 919-930. WoS PubMed FullText FullText_BOKU

** Wang, X; Falk, M; Ortiz, R; Matsumura, H; Bobacka, J; Ludwig, R; Bergelin, M; Gorton, L; Shleev, S Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes..

Biosens Bioelectron. 2012; 31(1):219-225 WoS PubMed FullText FullText_BOKU


** Uhnakova, B; Ludwig, R; Peknicova, J; Homolka, L; Lisa, L; Sulc, M; Petrickova, A; Elzeinova, F; Pelantova, H; Monti, D; Kren, V; Haltrich, D; Martinkova, L Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products.

BIORESOURCE TECHNOL. 2011; 102(20): 9409-9415. WoS FullText FullText_BOKU

** Van Hecke, W; Haltrich, D; Frahm, B; Brod, H; Dewulf, J; Van Langenhove, H; Ludwig, R A biocatalytic cascade reaction sensitive to the gas-liquid interface: Modeling and upscaling in a dynamic membrane aeration reactor.

J MOL CATAL B-ENZYM. 2011; 68(2): 154-161. WoS FullText FullText_BOKU

** Vasilchenko, LG; Karapetyan, KN; Yershevich, OP; Ludwig, R; Zamocky, M; Peterbauer, CK; Haltrich, D; Rabinovich, ML Cellobiose dehydrogenase of Chaetomium sp. INBI 2-26(-): Structural basis of enhanced activity toward glucose at neutral pH.

BIOTECHNOL J. 2011; 6(5): 538-553. WoS PubMed FullText FullText_BOKU


** Coman, V; Ludwig, R; Harreither, W; Haltrich, D; Gorton, L; Ruzgas, T; Shleev, S A Direct Electron Transfer-Based Glucose/Oxygen Biofuel Cell Operating in Human Serum.

FUEL CELLS. 2010; 10(1): 9-16. WoS FullText FullText_BOKU

** Ludwig, R; Harreither, W; Tasca, F; Gorton, L Cellobiose Dehydrogenase: A Versatile Catalyst for Electrochemical Applications.

CHEMPHYSCHEM. 2010; 11(13): 2674-2697. WoS PubMed FullText FullText_BOKU

** Tasca, F; Gorton, L; Kujawa, M; Patel, I; Harreither, W; Peterbauer, CK; Ludwig, R; Nöll, G Increasing the coulombic efficiency of glucose biofuel cell anodes by combination of redox enzymes..

Biosens Bioelectron. 2010; 25(7):1710-1716 WoS PubMed FullText FullText_BOKU


** Pricelius, S; Ludwig, R; Lant, N; Haltrich, D; Guebitz, GM Substrate specificity of Myriococcum thermophilum cellobiose dehydrogenase on mono-, oligo-, and polysaccharides related to in situ production of H2O2.

APPL MICROBIOL BIOTECHNOL. 2009; 85(1): 75-83. WoS PubMed FullText FullText_BOKU

** Stoica, L., Dimcheva, N., Ackermann, Y., Karnicka, K., Guschin, D. A., Kulesza, P. J., Rogalski, J., Haltrich, D., Ludwig, R., Gorton, L., Schuhmann, W. Membrane-Less Biofuel Cell Based on Cellobiose Dehydrogenase (Anode)/Laccase (Cathode) Wired via Specific Os-Redox Polymers.

FUEL CELLS, 9, 53-62; ISSN 1615-6846 WoS FullText FullText_BOKU

** Van Hecke, W; Ludwig, R; Dewulf, J; Auly, M; Messiaen, T; Haltrich, D; Van Langenhove, H Bubble-free oxygenation of a bi-enzymatic system: effect on biocatalyst stability..

Biotechnol Bioeng. 2009; 102(1):122-131 WoS PubMed FullText FullText_BOKU


** Maischberger, T; Nguyen, TH; Sukyai, P; Kittl, R; Riva, S; Ludwig, R; Haltrich, D Production of lactose-free galacto-oligosaccharide mixtures: comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid.


** Zamocky, M; Schumann, C; Sygmund, C; O'Callaghan, J; Dobson, ADW; Ludwig, R; Haltrich, D; Peterbauer, CK Cloning, sequence analysis and heterologous expression in Pichia pastoris of a gene encoding a thermostable cellobiose dehydrogenase from Myriococcum thermophilum.

PROTEIN EXPRESS PURIF. 2008; 59(2): 258-265. WoS FullText FullText_BOKU


** Coman, V., Harreither, W., Ludwig, R., Haltrich, D., and Gorton, L. Investigation of Electron Transfer Between Cellobiose Dehydrogenase From Myriococcum Thermophilum and Gold Electrodes.

CHEM ANAL-WARSAW, 52, 954-960; ISSN 0009-2223 WoS

** Harreither, W., Coman, V., Ludwig, R., Haltrich, D., and Gorton, L. Investigation of graphite electrodes modified with cellobiose dehydrogenase from the ascomycetes Myriococcum thermophilum.

ELECTROANAL, 19, 172-180 WoS FullText FullText_BOKU

** Nyanhongo, G. S., Gübitz, G., Sukyai, P., Leitner, C., Haltrich, D., Ludwig R. Oxidoreductases from Trametes spp. in biotechnology: a wealth of catalytic activity.

FOOD TECHNOL BIOTECH, 45, 250-268; ISSN 1330-9862 WoS


** Karapetyan, KN; Fedorova, TV; Vasil'chenko, LG; Ludwig, R; Haltrich, D; Rabinovich, ML Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(-) and comparison with basidiomycetous cellobiose dehydrogenases..

J Biotechnol. 2006; 121(1):34-48 WoS PubMed FullText FullText_BOKU

** Zamocky, M; Ludwig, R; Peterbauer, C; Hallberg, BM; Divne, C; Nicholls, P; Haltrich, D Cellobiose dehydrogenase--a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi..

Curr Protein Pept Sci. 2006; 7(3):255-280 WoS PubMed


** Christenson, A., Dimcheva, N., Ferapontova, E. E., Gorton, L., Ruzgas, T., Stoica, L., Shleev, S., Yaropolov, A. I., Haltrich, D., Thorneley, R. N. F., and Aust, S. D. Direct electron transfer between ligninolytic redox enzymes and electrodes.

Electroanalysis , 16, 1074–1092 WoS FullText FullText_BOKU

** Ludwig, R., Ozga, M., Zámocky, M., Peterbauer, C., Kulbe, K. D., and Haltrich, D. Continuous enzymatic regeneration of electron acceptors used by flavoenzymes: Cellobiose dehydrogenase-catalyzed production of lactobionic acid as an example.

Biocatalysis Biotrans., 22, 97–104 WoS FullText FullText_BOKU

** Zámocky, M., Hällberg, M., Ludwig, R., Divne, C., and Haltrich, D. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi.

Gene, 338, 1–14 WoS PubMed FullText FullText_BOKU


** Baminger, U; Ludwig, R; Galhaup, C; Leitner, C; Kulbe, KD; Haltrich, D Continuous enzymatic regeneration of redox mediators used in biotransformation reactions employing flavoproteins.


** Lindgren, A., Gorton, L., Ruzgas, T., Baminger, U., Haltrich, D., Schülein, M. Direct electron transfer of cellobiose dehydrogenase from various biological origins at gold and graphite electrodes..

J. Electroanal. Chem., 496, 76-81 WoS


** Baminger, U; Nidetzky, B; Kulbe, KD; Haltrich, D A simple assay for measuring cellobiose dehydrogenase activity in the presence of laccase.

J MICROBIOL METH. 1999; 35(3): 253-259. WoS PubMed

© BOKU Wien Impressum