Suchbegriffe: machine learning, . Treffer: 55
** Łabaj, PP; Dopazo, J; Xiao, W; Kreil, DP; Editorial: Critical assessment of massive data analysis (CAMDA) annual conference 2021..
** Adavi, Z; Ghassemi, B; Weber, R; Hanna, N Machine Learning-Based Estimation of Hourly GNSS Precipitable Water Vapour.
** Derbas, M; Jaquemod, A; Frömel-Frybort, S; Güzel, K; Moehring, HC; Riegler, M Multisensor data fusion and machine learning to classify wood products and predict workpiece characteristics during milling.
CIRP J MANUF SCI TEC. 2023; 47: 103-115. WoS FullText FullText_BOKU** Fenz, S; Neubauer, T; Friedel, JK; Wohlmuth, ML AI- and data-driven crop rotation planning.
COMPUT ELECTRON AGR. 2023; 212, 108160 WoS FullText FullText_BOKU** Gelaye, KK; Zehetner, F; Stumpp, C; Dagnew, EG; Klik, A Application of artificial neural networks and partial least squares regression to predict irrigated land soil salinity in the Rift Valley Region, Ethiopia.
** Gruber, S; Rienesl, L; Kock, A; Egger-Danner, C; Solkner, J Importance of Mid-Infrared Spectra Regions for the Prediction of Mastitis and Ketosis in Dairy Cows.
** Holzinger, A; Keiblinger, K; Holub, P; Zatloukal, K; Muller, H AI for life: Trends in artificial intelligence for biotechnology.
NEW BIOTECHNOL. 2023; 74: 16-24. WoS PubMed FullText FullText_BOKU** Immitzer, M; Atzberger, C Tree Species Diversity Mapping-Success Stories and Possible Ways Forward.
** Milanovic, S; Trailovic, Z; Milanovic, SD; Hochbichler, E; Kirisits, T; Immitzer, M; Cermak, P; Pokorny, R; Jankovsky, L; Jaafari, A Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data.
** Mirzaei, M; Caballero-Calvo, A; Anari, MG; -Pines, ED; Saronjic, N; Mohammed, S; Szabo, S; Mousavi, SMN Assessment of soil CO2 and NO fluxes in a semi-arid region using machine learning approaches.
J ARID ENVIRON. 2023; 211, 104947 WoS FullText FullText_BOKU** Randelovic, P; Dordevic, V; Miladinovic, J; Prodanovic, S; Ceran, M; Vollmann, J High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data.
** Soranzo, E; Guardiani, C; Chen, YR; Wang, YT; Wu, W Convolutional neural networks prediction of the factor of safety of random layered slopes by the strength reduction method.
ACTA GEOTECH. 2023; 18(6): 3391-3402. WoS FullText FullText_BOKU** Timofeyenko, K; Kanavalau, D; Alexiou, P; Kalyna, M; Ruzicka, K CATSNAP: a user-friendly algorithm for determining the conservation of protein variants reveals extensive parallelisms in the evolution of alternative splicing.
NEW PHYTOL. 2023; 238(4): 1722-1732. WoS PubMed FullText FullText_BOKU** Zeitfogel, H; Feigl, M; Schulz, K Soil information on a regional scale: Two machine learning based approaches for predicting saturated hydraulic conductivity.
GEODERMA. 2023; 433, 116418 WoS FullText FullText_BOKU** Arabameri, A; Pal, SC; Rezaie, F; Chakrabortty, R; Saha, A; Blaschke, T; Di Napoli, M; Ghorbanzadeh, O; Ngo, PTT Decision tree based ensemble machine learning approaches for landslide susceptibility mapping.
GEOCARTO INT. 2022; 37(16): 4594-4627. WoS FullText FullText_BOKU** Aslam, B; Maqsoom, A; Khalil, U; Ghorbanzadeh, O; Blaschke, T; Farooq, D; Tufail, RF; Suhail, SA; Ghamisi, P Evaluation of Different Landslide Susceptibility Models for a Local Scale in the Chitral District, Northern Pakistan.
** Britz, R; Barta, N; Klingler, A; Schaumberger, A; Bauer, A; Potsch, EM; Gronauer, A; Motsch, V Hyperspectral-Based Classification of Managed Permanent Grassland with Multilayer Perceptrons: Influence of Spectral Band Count and Spectral Regions on Model Performance.
** Britz, R; Barta, N; Schaumberger, A; Klingler, A; Bauer, A; Poetsch, EM; Gronauer, A; Motsch, V Spectral-Based Classification of Plant Species Groups and Functional Plant Parts in Managed Permanent Grassland.
** Cabitza, F; Campagner, A; Malgieri, G; Natali, C; Schneeberger, D; Stoeger, K; Holzinger, A Quod erat demonstrandum?- Towards a typology of the concept of explanation for the design of explainable AI.
EXPERT SYST APPL. 2022; 213, 118888 WoS FullText FullText_BOKU** Chen, G; Xie, L; Zhao, FQ; Kreil, DP Editorial: The application of sequencing technologies and bioinformatics methods in cancer biology.
** Cheng, MH; Penuelas, J; McCabe, MF; Atzberger, C; Jiao, XY; Wu, WB; Jin, XL Combining multi-indicators with machine-learning algorithms for maize at the-level in China.
AGR FOREST METEOROL. 2022; 323, 109057 WoS FullText FullText_BOKU** Feigl, M; Roesky, B; Herrnegger, M; Schulz, K; Hayashi, M Learning from mistakes-Assessing the performance and uncertainty in process-based models.
HYDROL PROCESS. 2022; 36(2), e14515 WoS PubMed** Feigl, M; Thober, S; Schweppe, R; Herrnegger, M; Samaniego, L; Schulz, K Automatic Regionalization of Model Parameters for Hydrological Models.
WATER RESOUR RES. 2022; 58(12), e2022WR031966 WoS FullText FullText_BOKU** Ghassemi, B; Immitzer, M; Atzberger, C; Vuolo, F Evaluation of Accuracy Enhancement in European-Wide Crop Type Mapping by Combining Optical and Microwave Time Series.
** Guardiani, C; Soranzo, E; Wu, W Time-dependent reliability analysis of unsaturated slopes under rapid drawdown with intelligent surrogate models.
ACTA GEOTECH. 2022; 17(4): 1071-1096. WoS FullText FullText_BOKU** Holzinger, A; Saranti, A; Angerschmid, A; Retzlaff, CO; Gronauer, A; Pejakovic, V; Medel-Jimenez, F; Krexner, T; Gollob, C; Stampfer, K Digital Transformation in Smart Farm and Forest Operations Needs Human-Centered AI: Challenges and Future Directions.
** Jiang, QH; Seth, S; Scharl, T; Schroeder, T; Jungbauer, A; Dimartino, S Prediction of the performance of pre-packed purification columns through machine learning.
J SEP SCI. 2022; 45(8): 1445-1457. WoS PubMed FullText FullText_BOKU** Kitzler, F; Wagentristl, H; Neugschwandtner, RW; Gronauer, A; Motsch, V Influence of Selected Modeling Parameters on Plant Segmentation Quality Using Decision Tree Classifiers.
** Laa, U; Cook, D; Lee, S Burning Sage: Reversing the Curse of Dimensionality in the Visualization of High-Dimensional Data.
J COMPUT GRAPH STAT. 2022; 31(1): 40-49. WoS FullText FullText_BOKU** Lees, T; Tseng, G; Atzberger, C; Reece, S; Dadson, S Deep Learning for Vegetation Health Forecasting: A Case Study in Kenya.
** Soranzo, E; Guardiani, C; Wu, W A soft computing approach to tunnel face stability in a probabilistic framework.
ACTA GEOTECH. 2022; 17(4): 1219-1238. WoS FullText FullText_BOKU** Wober, W; Mehnen, L; Curto, M; Tibihika, PD; Tesfaye, G; Meimberg, H Investigating Shape Variation Using Generalized Procrustes Analysis and Machine Learning.
** Bayer, B; Diaz, RD; Melcher, M; Striedner, G; Duerkop, M Digital Twin Application for Model-Based DoE to Rapidly Identify Ideal Process Conditions for Space-Time Yield Optimization.
** Costache, R; Arabameri, A; Elkhrachy, I; Ghorbanzadeh, O; Pham, QB Detection of areas prone to flood risk using state-of-the-art machine learning models.
** Creutzig, F; Callaghan, M; Ramakrishnan, A; Javaid, A; Niamir, L; Minx, J; Muller-Hansen, F; Sovacool, B; Afroz, Z; Andor, M; Antal, M; Court, V; Das, N; Diaz-Jose, J; Dobbe, F; Figueroa, MJ; Gouldson, A; Haberl, H; Hook, A; Ivanova, D; Lamb, WF; Maizi, N; Mata, E; Nielsen, KS; Onyige, CD; Reisch, LA; Roy, J; Scheelbeek, P; Sethi, M; Some, S; Sorrell, S; Tessier, M; Urmee, T; Virag, D; Wan, C; Wiedenhofer, D; Wilson, C Reviewing the scope and thematic focus of 100 000 publications on energy consumption, services and social aspects of climate change: a big data approach to demand-side mitigation*.
** Ebrahimy, H; Naboureh, A; Feizizadeh, B; Aryal, J; Ghorbanzadeh, O Integration of Sentinel-1 and Sentinel-2 Data with the G-SMOTE Technique for Boosting Land Cover Classification Accuracy.
** Lasser, J; Matzhold, C; Egger-Danner, C; Fuerst-Waltl, B; Steininger, F; Wittek, T; Klimek, P Integrating diverse data sources to predict disease risk in dairy cattle-a machine learning approach.
J ANIM SCI. 2021; 99(11), skab294 WoS PubMed FullText FullText_BOKU** Woeber, W; Mehnen, L; Sykacek, P; Meimberg, H Investigating Explanatory Factors of Machine Learning Models for Plant Classification.
PLANTS-BASEL. 2021; 10(12), 2674 WoS PubMed FullText FullText_BOKU** Baumgartner, J; Gruber, K; Simoes, SG; Saint-Drenan, YM; Schmidt, J Less Information, Similar Performance: Comparing Machine Learning-Based Time Series of Wind Power Generation to Renewables.ninja.
** Bayer, B; Striedner, G; Duerkop, M Hybrid Modeling and Intensified DoE: An Approach to Accelerate Upstream Process Characterization.
** Feigl, M; Herrnegger, M; Klotz, D; Schulz, K Function Space Optimization: A Symbolic Regression Method for Estimating Parameter Transfer Functions for Hydrological Models.
** Hintze, S; Maulbetsch, F; Asher, L; Winckler, C Doing nothing and what it looks like: inactivity in fattening cattle.
** Jin, XL; Li, ZH; Atzberger, C Editorial for the Special Issue "Estimation of Crop Phenotyping Traits using Unmanned Ground Vehicle and Unmanned Aerial Vehicle Imagery".
** Salcedo-Sanz, S; Ghamisi, P; Piles, M; Werner, M; Cuadra, L; Moreno-Martinez, A; Izquierdo-Verdiguier, E; Munoz-Mari, J; Mosavi, A; Camps-Valls, G Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources.
INFORM FUSION. 2020; 63: 256-272. WoS FullText FullText_BOKU** Waldmann, P; Pfeiffer, C; Meszaros, G Sparse Convolutional Neural Networks for Genome-Wide Prediction.
** Arabameri, A; Roy, J; Saha, S; Blaschke, T; Ghorbanzadeh, O; Bui, DT Application of Probabilistic and Machine Learning Models for Groundwater Potentiality Mapping in Damghan Sedimentary Plain, Iran.
** Kratzert, F; Klotz, D; Herrnegger, M; Sampson, AK; Hochreiter, S; Nearing, GS Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning.
** Mihaylov, I; Kandula, M; Krachunov, M; Vassilev, D A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models.
** Oner, T; Thiam, P; Kos, G; Krska, R; Schwenker, F; Mizaikoff, B Machine learning algorithms for the automated classification of contaminated maize at regulatory limits via infrared attenuated total reflection spectroscopy.
WORLD MYCOTOXIN J. 2019; 12(2): 113-122. WoS FullText FullText_BOKU** Rammer, W; Seidl, R Harnessing Deep Learning in Ecology: An Example Predicting Bark Beetle Outbreaks.
** Schuwirth, N; Borgwardt, F; Domisch, S; Friedrichs, M; Kattwinkel, M; Kneis, D; Kuemmerlen, M; Langhans, SD; Martinez-Lopez, J; Vermeiren, P How to make ecological models useful for environmental management.
** Melcher, M; Scharl, T; Luchner, M; Striedner, G; Leisch, F; Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling..
Biotechnol Bioeng. 2017; 114(2):321-334 WoS PubMed FullText FullText_BOKU** Heiser, M; Scheidl, C; Eisl, J; Spangl, B; Hubl, J Process type identification in torrential catchments in the eastern Alps.
GEOMORPHOLOGY. 2015; 232: 239-247. WoS FullText FullText_BOKU** Olsen, L; Oostenbrink, C; Jorgensen, FS Prediction of cytochrome P450 mediated metabolism.
ADV DRUG DELIVER REV. 2015; 86: 61-71. WoS PubMed FullText FullText_BOKU** Stjernschantz, E; Vermeulen, NP; Oostenbrink, C Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450..
Expert Opin Drug Metab Toxicol. 2008; 4(5):513-527 WoS PubMed FullText FullText_BOKU