BOKU - Universität für Bodenkultur Wien - Forschungsinformationssystem

Logo BOKU-Forschungsportal

Gewählte Publikation:

Dissanayake, BM; Staudinger, C; Munns, R; Taylor, NL; Millar, AH.
(2022): Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types
J PROTEOMICS. 2022; 256, 104502 FullText FullText_BOKU

The impact of salinity on wheat plants is often studied by analysis of shoot responses, even though the main mechanism of tolerance is shoot Na+ exclusion. Wheat roots directly experience rising NaCl concentrations and show more physiological responses in root tips than in mature roots and altered responses with time; but the molecular reason for these differential responses is unclear. We have found that there is a distinct difference between the proteome responses of wheat root tip and mature root tissues to salinity. Translation and protein synthesis related proteins showed a significant decrease in abundance, most of the glycolytic enzymes and selected TCA cycle enzymes and ATP synthase subunits were significantly decreased in abundance under salt stress in root tips only. The root tip response in wheat indicates the protein synthesis capacity and energy production were impaired under salt stress which correlated with the anatomical response of root growth decrease and its respiratory rate. Wheat root responses are direct and rapid effects of the soil salinity in this species, therefore shoot responses such as reduction in shoot growth and photosynthetic capacity need to be considered in light of these effects on root metabolism. Significance: Salinity is a critical environmental factor limiting crop production throughout the world. Wheat (Triticum aestivum) is the most significant cereal crop for human nutrition and both its growth and yield is negatively impacted by salinity. Salinity stress is known to impose osmotic stress in plants during the initial phase of exposure and ion toxicity in the later stages of development. Roots are the first plant organ to perceive the salt. However, intensive breading approaches to develop salt tolerant crops have mainly focussed on exclusion of salt from above ground tissues, and only achieved limited success to date. Wheat roots physiologically respond to salinity by overall reduction in the length of seminal mots. The stunting of the wheat root system is considered to be a result of higher sensitivity of root tips to salinity. However, the metabolic changes that underpin selective root tip sensitivity is largely unknown. Here, we carried out non-targeted profiling of mature root versus root tip proteomes under control and salt stress conditions. We found distinct changes in abundance of proteins involved in carbon and energy metabolism and protein metabolism in mature roots and root tips in response to salt stress. We further investigated the impact of these changes on metabolic machinery in the wheat root proteome using a targeted MS approach. We found evidence that protein synthesis and energy production machinery becomes limiting in mot tips, while the same processes in mature root remains less affected by salt stress. Our proteomic data explain the impairment of root growth and physiological characteristics as well as improve the understanding of wheat root responses under salinity which is an essential first step for further investigation of molecular traits underpinning root characteristics to improve salt tolerance of wheat.
Autor*innen der BOKU Wien:
Staudinger Christiana

Find related publications in this database (Keywords)
Root tip
Mature root
Root metabolism

© BOKU Wien Impressum