BOKU - Universität für Bodenkultur Wien - Forschungsinformationssystem

Logo BOKU-Forschungsportal

Gewählte Publikation:

Kracher, D; Scheiblbrandner, S; Felice, AKG; Breslmayr, E; Preims, M; Ludwicka, K; Haltrich, D; Eijsink, VGH; Ludwig, R.
(2016): Extracellular electron transfer systems fuel cellulose oxidative degradation
SCIENCE. 2016; 352(6289): 1098-1101. FullText FullText_BOKU

Ninety percent of lignocellulose-degrading fungi contain genes encoding lytic polysaccharide monooxygenases (LPMOs). These enzymes catalyze the initial oxidative cleavage of recalcitrant polysaccharides after activation by an electron donor. Understanding the source of electrons is fundamental to fungal physiology and will also help with the exploitation of LPMOs for biomass processing. Using genome data and biochemical methods, we characterized and compared different extracellular electron sources for LPMOs: cellobiose dehydrogenase, phenols procured from plant biomass or produced by fungi, and glucose-methanol-choline oxidoreductases that regenerate LPMO-reducing diphenols. Our data demonstrate that all three of these electron transfer systems are functional and that their relative importance during cellulose degradation depends on fungal lifestyle. The availability of extracellular electron donors is required to activate fungal oxidative attack on polysaccharides.
Autor/innen der BOKU Wien:
Breslmayr Erik
Felice Alfons Konrad
Haltrich Dietmar
Kracher Daniel
Ludwig Roland
Preims Marita
Scheiblbrandner Stefan
BOKU Gendermonitor:

© BOKU Wien Impressum