BOKU - Universität für Bodenkultur Wien - Forschungsinformationssystem

Logo BOKU-Forschungsportal

Gewählte Publikation:

Rosenau, T; Potthast, A; Hettegger, H; Bacher, M; Opietnik, M; Roder, T; Adorjan, I.
(2021): On the role of N-methylmorpholine-N-oxide (NMMO) in the generation of elemental transition metal precipitates in cellulosic materials
CELLULOSE. 2021; 28(16): 10143-10161. FullText FullText_BOKU

Several literature reports describe the role of aqueous solutions of N-methylmorpholine-N-oxide monohydrate (NMMO) as a suitable medium for the generation of transition metal (nano)particles in or on cellulosic materials and further elaborate its role as a co-reactant of the transition metal salts that are reduced to the elemental metal. However, this would assign NMMO the role of a reductant, which is in contradiction of its obvious oxidative nature. In the present study, the exemplary cases of silver, gold, and platinum salts as the precursors of the respective metal (nano)particles in aqueous NMMO/cellulose mixtures were investigated. Naturally, NMMO did not act as a reducing agent in any case-this role was taken over by the frequently used NMMO stabilizer propyl gallate, or by cellulose itself, into which carbonyl and carboxyl groups were introduced. Also, hypochlorite-produced intermediately from chloride ions and subsequently undergoing disproportionation into chloride and chlorate-or transient N-methylene(morpholinium) ions generated from NMMO, which are in turn oxidized to formyl morpholide, can act as the corresponding reductants while the metal ions are reduced, depending on the reaction conditions. Apart from providing interesting mechanistic insights, the study points to the importance of a precise description of the composition of the chemical systems used, as well as the importance of seemingly inert auxiliaries, which turned out to be essential co-reactants in the metal (nano)particle generation. [GRAPHICS]
Autor*innen der BOKU Wien:
Bacher Markus
Hettegger Hubert
Potthast Antje
Rosenau Thomas
BOKU Gendermonitor:

Find related publications in this database (Keywords)
Propyl gallate
Reaction mechanism
Redox reaction
Transition metal nanoparticles

© BOKU Wien Impressum