BOKU - Universität für Bodenkultur Wien - Forschungsinformationssystem

Logo BOKU-Forschungsportal

Gewählte Publikation:

Messner, P; Steiner, K; Zarschler, K; Schäffer, C; .
(2008): S-layer nanoglycobiology of bacteria.
Carbohydr Res. 2008; 343(12):1934-1951 FullText FullText_BOKU

Cell surface layers (S-layers) are common structures of the bacterial cell envelope with a lattice-like appearance that are formed by a self-assembly process. Frequently, the constituting S-layer proteins are modified with covalently linked glycan chains facing the extracellular environment. S-layer glycoproteins from organisms of the Bacillaceae family possess long, O-glycosidically linked glycans that are composed of a great variety of sugar constituents. The observed variations already exceed the display found in eukaryotic glycoproteins. Recent investigations of the S-layer protein glycosylation process at the molecular level, which has lagged behind the structural studies due to the lack of suitable molecular tools, indicated that the S-layer glycoprotein glycan biosynthesis pathway utilizes different modules of the well-known biosynthesis routes of lipopolysaccharide O-antigens. The genetic information for S-layer glycan biosynthesis is usually present in S-layer glycosylation (s/g) gene clusters acting in concert with housekeeping genes. To account for the nanometer-scale cell surface display feature of bacterial S-layer glycosylation, we have coined the neologism 'nanoglycobiology'. It includes structural and biochemical aspects of S-layer glycans as well as molecular data on the machinery underlying the glycosylation event. A key aspect for the full potency of S-layer nanoglycobiology is the unique self-assembly feature of the S-layer protein matrix. Being aware that in many cases the glycan structures associated with a protein are the key to protein function, S-layer protein glycosylation will add a new and valuable component to an 'S-layer based molecular construction kit'. In our long-term research strategy, S-layer nanoglycobiology shall converge with other functional glycosylation systems to produce 'functional' S-layer neoglycoproteins for diverse applications in the fields of nanobiotechnology and vaccine technology. Recent advances in the field of S-layer nanoglycobiology have made our overall strategy a tangible aim of the near future. (C) 2008 Elsevier Ltd. All rights reserved.
Autor*innen der BOKU Wien:
Messner Paul
Schäffer Christina
BOKU Gendermonitor:

Find related publications in this database (using NML MeSH Indexing)
Archaeal Proteins/chemistry;Bacteria/metabolism;Bacterial Proteins*/chemistry;Genes, Bacterial/physiology;Glycomics/methods*;Glycosylation;Membrane Glycoproteins*/chemistry;Nanotechnology/methods*;

Find related publications in this database (Keywords)
S-layer glycoprotein
glycosylation enzymes
glycosylation gene cluster
carbohydrate engineering

© BOKU Wien Impressum