BOKU - Universität für Bodenkultur Wien - Forschungsinformationssystem

Logo BOKU-Forschungsportal

Gewählte Publikation:

Vasic, S; Stanzi-Tschegg, S.
(2007): Experimental and numerical investigation of wood fracture mechanisms at different humidity levels
HOLZFORSCHUNG. HOLZFORSCHUNG; 61: 367-374. FullText FullText_BOKU

Abstract:
Differences in fracture patterns and properties at various moisture levels are experimentally and numerically evaluated and discussed. Experiments were performed on spruce, pine, oak and beech. The influence of moisture at 98%, 80%, 65% and 30% RH and the mechanisms involved were investigated for softwoods and hardwoods subjected to opening mode I fracture using in situ and ex situ real-time environmental scanning electron microscopy (ESEM). The wedge-splitting technique was employed. To quantify the effect of humidity, fracture toughness values were obtained from ex situ tests and finite element analysis of the contact problem in wedge-splitting. In addition, lattice fracture model simulations were performed for numerical investigation of the fracture mechanisms. Distinct changes in wood fracture behaviour were observed as a function of moisture content. Fracture toughness was highest at 30% RH for all species except for oak, and showed higher values in the radial-longitudinal than in the tangential-radial direction. In green wood, water droplets moved away from the cell lumens around the crack tip. Drying of wood promotes microcracking and crack bridging as toughening mechanisms. The findings reported may be useful for further research into the interaction between moisture transfer and stress gradients in wood accompanied by moisturecrack phenomena.
Autor*innen der BOKU Wien:
Tschegg Stefanie
BOKU Gendermonitor:


Find related publications in this database (Keywords)
environmental scanning electron microscopy (ESEM)
finite element analysis (FEA)
fracture
fracture mechanisms
moisture
numerical modelling
solid wood


Altmetric:
© BOKU Wien Impressum