Gewählte Publikation:
Marschner, P; Godbold, DL; Jentschke, G.
(1996):
Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce (Picea abies (L) Karst)
PLANT SOIL. 1996; 178(2): 239-245.
FullText
FullText_BOKU
- Abstract:
- Twelve-week-old seedlings of Norway spruce (Picea abies (L.) Karst), non-mycorrhizal or mycorrhizal with Laccaria laccata, Paxillus involutus or Pisolithus tinctorius were exposed to 5 mu M Pb for either 32 or 42 days in a quartz sand-nutrient solution system. Ultrathin sections of mycorrhizal and non-mycorrhizal short roots were examined by X-ray microanalysis. After 42 days Pb treatment, the Pb content of the cortex cell walls was lower in the non-mycorrhizal short roots and in the P. involutus mycorrhizae than in the mycorrhizae of L. laccata or P. tinctorius. The Pb content of the cell walls of the hyphal mantle was higher in P. involutus than in L. laccata or P. tinctorius. The short term experiment over 32 days showed that the Pb content of the cortex cell walls strongly increased during the first 16 days in the non-mycorrhizal roots and the L. laccata mycorrhizae, whereas it increased more slowly in the P. involutus mycorrhizae. After 32 days Pb treatment, the Pb content in the cortex cell walls in the P. involutus mycorrhizae was similar to that in the non-mycorrhizal roots. P. involutus also decreased Pb translocation from the roots to the stems. Mycorrhizal infection was not affected by Pb but with P. involutus, the amount of extramatrical mycelium was reduced by 50% on day 32 compared to day 16. The extramatrical mycelium of L. laccata was not reduced by Pb. It is concluded that ectomycorrhizal fungi differ in their effect on Pb accumulation in the roots of Norway spruce. The binding capacity of the extramatrical mycelium seems to be an important factor.
- Autor*innen der BOKU Wien:
-
Godbold Douglas L.
- Find related publications in this database (Keywords)
-
ectomycorrhizae
-
lead
-
X-ray microanalysis
Altmetric: