University of Natural Resources and Life Sciences, Vienna (BOKU) - Research portal

Logo BOKU Resarch Portal

Selected Publication:

Djukic, I; Zehetner, F; Tatzber, M; Gerzabek, MH.
(2010): Soil organic-matter stocks and characteristics along an Alpine elevation gradient
J PLANT NUTR SOIL SCI. 2010; 173(1): 30-38. FullText FullText_BOKU

Abstract:
Mountain regions are known to be especially vulnerable to climatic changes; however, information on the climate sensitivity of alpine ecosystems is still scarce to date. In this study, we investigate the impacts of climate and vegetation composition on soil organic-matter (SOM) stocks and characteristics along an elevation gradient (900 to 1900 m asl) in the Austrian Limestone Alps. The soils classified as Leptic Histosols, i.e., organic soils directly overlying the calcareous bedrock. Soil organic-carbon stocks (SOC; mean +/- standard deviation) to bedrock increased in the low-elevation forest sites from 19 +/- 3 kg m(-2) (900 m asl) to 31 +/- 3 kg m(-2) (1300 m asl), reached a maximum (38 +/- 5 kg m(-2)) in the shrubland at 1500 m asl, but decreased again in the high-elevation grassland sites (26 +/- 3 kg m(-2) at 1700 m asl and 13 +/- 3 kg m(-2) at 1900 m asl). Thermogravimetic measurements and Fourier-transtorm infrared spectroscopy (FTIR) suggest that the upper soil layers were dominated by more labile organic compounds, whereas more persistent materials increased with depth. Along the studied climosequence, the aliphatic FTIR band (2920 cm(-1)) was lower in the low-elevation forest sites compared to the high-elevation grassland sites. Most other FTIR bands did not change with altitude, but were related to specific site conditions, such as vegetation composition and associated differences in soil pH. Our results demonstrate that differences in SOM stocks and characteristics are not consistently related to variations in climatic conditions along the studied elevation gradient, but are strongly affected by the vegetation composition, their C input and litter quality. This, in turn, is expected to shift in response to climate change.
Authors BOKU Wien:
Djukic Ika
Gerzabek Martin
Tatzber Michael
Zehetner Franz

Find related publications in this database (Keywords)
calorimetry
carbon stocks
climosequence
forest floor
FTIR
litter layer
thermogravimetry


Altmetric:
© BOKU Wien Imprint